68 research outputs found

    Pupil slicer design for the NASA-NSF extreme precision Doppler spectrograph concept WISDOM

    Get PDF
    The WIYN Spectrograph for Doppler Monitoring (WISDOM) was a concept responding to NASA's solicitation for an extreme precision radial velocity instrument for the 3.5 meter WIYN telescope on Kitt Peak in Arizona. In order to meet the spectral resolution requirement of R = 110,000 while maintaining good throughput and a manageable beam diameter, the front end design of the instrument employed a pupil slicing technique wherein a collimated beam is sliced and fed to six separate fibers. This paper presents the optical and mechanical design of the pupil slicer subassembly, a unique method of dealing with thermally induced defocus error, and the methods and results of aligning a prototype

    Kinematic and Spatial Substructure in NGC 2264

    Full text link
    We present an expanded kinematic study of the young cluster NGC 2264 based upon optical radial velocities measured using multi-fiber echelle spectroscopy at the 6.5 meter MMT and Magellan telescopes. We report radial velocities for 695 stars, of which approximately 407 stars are confirmed or very likely members. Our results more than double the number of members with radial velocities from F{\H u}r{\'e}sz et al., resulting in a much better defined kinematic relationship between the stellar population and the associated molecular gas. In particular, we find that there is a significant subset of stars that are systematically blueshifted with respect to the molecular (13^{13}CO) gas. The detection of Lithium absorption and/or infrared excesses in this blue-shifted population suggests that at least some of these stars are cluster members; we suggest some speculative scenarios to explain their kinematics. Our results also more clearly define the redshifted population of stars in the northern end of the cluster; we suggest that the stellar and gas kinematics of this region are the result of a bubble driven by the wind from O7 star S Mon. Our results emphasize the complexity of the spatial and kinematic structure of NGC 2264, important for eventually building up a comprehensive picture of cluster formation.Comment: Accepted to AJ. 38 pages, 5 Figures 3 Table

    A concept for seeing-limited near-IR spectroscopy on the Giant Magellan Telescope

    Get PDF
    We present a simple seeing-limited IR spectrometer design for the Giant Magellan Telescope, with continuous R = 6000 coverage from 0.87-2.50 microns for a 0:7” slit. The instrument's design is based on an asymmetric white pupil echelle layout, with dichroics splitting the optical train into yJ, H, and K channels after the pupil transfer mirror. A separate low-dispersion mode offers single-object R ~ 850 spectra which also cover the full NIR bandpass in each exposure. Catalog gratings and H2RG detectors are used to minimize cost, and only two cryogenic rotary mechanisms are employed, reducing mechanical complexity. The instrument dewar occupies an envelope of 1:8×1:5×1:2 meters, satisfying mass and volume requirements for GMT with comfortable margin. We estimate the system throughput at ~ 35% including losses from the atmosphere, telescope, and instrument (i.e. all coatings, gratings, and sensors). This optical efficiency is comparable to the FIRE spectrograph on Magellan, and we have specified and designed fast cameras so the GMT instrument will have an almost identical pixel scale as FIRE. On the 6.5 meter Magellan telescopes, FIRE is read-noise limited in the y and J bands, similar to other existing near-IR spectrometers and also to JWST/NIRSPEC. GMT's twelve-fold increase in collecting area will therefore offer gains in signal-to-noise per exposure that exceed those of moderate resolution optical instruments, which are already sky-noise limited on today's telescopes. Such an instrument would allow GMT to pursue key early science programs on the Epoch of Reionization, galaxy formation, transient astronomy, and obscured star formation environments prior to commissioning of its adaptive optics system. This design study demonstrates the feasibility of developing relatively affordable spectrometers at the ELT scale, in response to the pressures of joint funding for these telescopes and their associated instrument suites.Massachusetts Institute of Technology. Department of Physics.Kavli Institute for Astrophysics and Space Researc

    The Sunburst Arc: Direct Lyman {\alpha} escape observed in the brightest known lensed galaxy

    Full text link
    We present rest-frame ultraviolet and optical spectroscopy of the brightest lensed galaxy yet discovered, at redshift z = 2.4. This source reveals a characteristic, triple-peaked Lyman {\alpha} profile which has been predicted by various theoretical works but to our knowledge has not been unambiguously observed previously. The feature is well fit by a superposition of two components: a double-peak profile emerging from substantial radiative transfer, and a narrow, central component resulting from directly escaping Lyman {\alpha} photons; but is poorly fit by either component alone. We demonstrate that the feature is unlikely to contain contamination from nearby sources, and that the central peak is unaffected by radiative transfer effects apart from very slight absorption. The feature is detected at signal-to-noise ratios exceeding 80 per pixel at line center, and bears strong resemblance to synthetic profiles predicted by numerical models.Comment: Accepted for publication in Astronomy & Astrophysics. 4 pages, 5 figure

    Optical design of the NASA-NSF extreme precision Doppler spectrograph concept "WISDOM"

    Get PDF
    The runway configuration is the set of the runways at an airport that are used for arrivals and departures at any time. While many factors, including weather, expected demand, environmental considerations, and coordination of flows with neighboring airports, influence the choice of runway configuration, the actual selection decision is made by air traffic controllers in the airport tower. As a result, the capacity of an airport at any time is dependent on the behavior of human decision makers. This paper develops a statistical model to characterize the configuration selection decision process using empirical observations. The proposed approach, based on the discrete-choice modeling framework, identifies the influence of various factors in terms of the utility function of the decision maker. The parameters of the utility functions are estimated through likelihood maximization. Correlations between different alternatives are captured using a multinomial “nested logit” model. A key novelty of this study is the quantitative assessment of the effect of inertia, or the resistance to configuration changes, on the configuration selection process. The developed models are used to predict the runway configuration 3 h ahead of time, given operating conditions such as wind, visibility, and demand. Case studies based on data from Newark (EWR) and LaGuardia (LGA) airports show that the proposed model predicts runway configuration choices significantly better than a baseline model that only considers the historical frequencies of occurrence of different configurations.United States. National Aeronautics and Space Administration (NNH14ZDA001N-EPDS

    Background-Limited Imaging in the Near-Infrared with Warm InGaAs Sensors: Applications for Time-Domain Astronomy

    Get PDF
    We describe test observations made with a customized 640 x 512 pixel Indium Gallium Arsenide (InGaAs) prototype astronomical camera on the 100" DuPont telescope. This is the first test of InGaAs as a cost-effective alternative to HgCdTe for research-grade astronomical observations. The camera exhibits an instrument background of 113 e-/sec/pixel (dark + thermal) at an operating temperature of -40C for the sensor, maintained by a simple thermo-electric cooler. The optical train and mechanical structure float at ambient temperature with no cold stop, in contrast to most IR instruments which must be cooled to mitigate thermal backgrounds. Measurements of the night sky using a reimager with plate scale of 0.4 arc seconds / pixel show that the sky flux in Y is comparable to the dark current. At J the sky brightness exceeds dark current by a factor of four, and hence dominates the noise budget. The sensor read noise of ~43e- falls below sky+dark noise for exposures of t>7 seconds in Y and 3.5 seconds in J. We present test observations of several selected science targets, including high-significance detections of a lensed Type Ia supernova, a type IIb supernova, and a z=6.3 quasar. Deeper images are obtained for two local galaxies monitored for IR transients, and a galaxy cluster at z=0.87. Finally, we observe a partial transit of the hot JupiterHATS34b, demonstrating the photometric stability required over several hours to detect a 1.2% transit depth at high significance. A tiling of available larger-format sensors would produce an IR survey instrument with significant cost savings relative to HgCdTe-based cameras, if one is willing to forego the K band. Such a camera would be sensitive for a week or more to isotropic emission from r-process kilonova ejecta similar to that observed in GW170817, over the full 190 Mpc horizon of Advanced LIGO's design sensitivity for neutron star mergers.Comment: 13 pages, 12 figures, submitted to A

    The Deformable Mirror Demonstration Mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration

    Full text link
    Coronagraphs on future space telescopes will require precise wavefront correction to detect Earth-like exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide wavefront control with low size, weight, and power. The Deformable Mirror Demonstration Mission (DeMi) payload will demonstrate a 140 actuator MEMS deformable mirror (DM) with \SI{5.5}{\micro\meter} maximum stroke. We present the flight optomechanical design, lab tests of the flight wavefront sensor and wavefront reconstructor, and simulations of closed-loop control of wavefront aberrations. We also present the compact flight DM controller, capable of driving up to 192 actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3 compute modules are used for task management and wavefront reconstruction. The spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for 2019.Comment: 15 pages, 10 figues. Presented at SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, US

    Calibration and Testing of the Deformable Mirror Demonstration Mission (DeMi) CubeSat Payload

    Get PDF
    The Deformable Mirror Demonstration Mission (DeMi) is a 6U CubeSat that will operate and characterize the on-orbit performance of a Microelectromechanical Systems (MEMS) deformable mirror (DM) with both an image plane and a Shack-Hartmann wavefront sensor (SHWFS). Coronagraphs on future space telescopes will require precise wavefront control to detect and characterize Earth-like exoplanets. High-actuator count MEMS deformable mirrors can provide wavefront control with low size, weight, and power. The DeMi payload will characterize the on-orbit performance of a 140 actuator MEMS DM with 5.5 _m maximum stroke, with a goal of measuring individual actuator wavefront displacement contributions to a precision of 12 nm. The payload will be able to measure low order aberrations to l/10 accuracy and l/50 precision, and will correct static and dynamic wavefront phase errors to less than 100 nm RMS. The DeMi team developed miniaturized DM driver boards to fit within the CubeSat form factor, and two cross-strapped Raspberry Pi 3 boards are used as payload computers. We present an overview of the payload design, the assembly, integration and test progress, and the miniaturized DM driver characterization process. Launch is planned for late 2019

    Radial Velocity Prospects Current and Future: A White Paper Report prepared by the Study Analysis Group 8 for the Exoplanet Program Analysis Group (ExoPAG)

    Full text link
    [Abridged] The Study Analysis Group 8 of the NASA Exoplanet Analysis Group was convened to assess the current capabilities and the future potential of the precise radial velocity (PRV) method to advance the NASA goal to "search for planetary bodies and Earth-like planets in orbit around other stars.: (U.S. National Space Policy, June 28, 2010). PRVs complement other exoplanet detection methods, for example offering a direct path to obtaining the bulk density and thus the structure and composition of transiting exoplanets. Our analysis builds upon previous community input, including the ExoPlanet Community Report chapter on radial velocities in 2008, the 2010 Decadal Survey of Astronomy, the Penn State Precise Radial Velocities Workshop response to the Decadal Survey in 2010, and the NSF Portfolio Review in 2012. The radial-velocity detection of exoplanets is strongly endorsed by both the Astro 2010 Decadal Survey "New Worlds, New Horizons" and the NSF Portfolio Review, and the community has recommended robust investment in PRVs. The demands on telescope time for the above mission support, especially for systems of small planets, will exceed the number of nights available using instruments now in operation by a factor of at least several for TESS alone. Pushing down towards true Earth twins will require more photons (i.e. larger telescopes), more stable spectrographs than are currently available, better calibration, and better correction for stellar jitter. We outline four hypothetical situations for PRV work necessary to meet NASA mission exoplanet science objectives.Comment: ExoPAG SAG 8 final report, 112 pages, fixed author name onl
    corecore